A general semiparametric approach to inference with marker-dependent hazard rate models
نویسندگان
چکیده
We examine a new general class of hazard rate models for duration data, containing parametric and nonparametric component. Both can be mix time effect possibly time-dependent covariate effects. A number well-known are special cases. In counting process framework, profile likelihood estimator is developed the component model shown to asymptotically normal efficient. Finite sample properties investigated in simulations. The applied investigate long-run relationship between birth weight later-life mortality.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA General Transformation Class of Semiparametric Cure Rate Frailty Models
We consider a class of cure rate frailty models for multivariate failure time data with a survival fraction. This class is formulated through a transformation on the unknown population survival function. It incorporates random effects to account for the underlying correlation, and includes the mixture cure model and the proportional hazards cure model as two special cases. We develop efficient ...
متن کاملSemiparametric Inference and Models
We review semiparametric models and various methods of inference – efficient and inefficient – for such models.”
متن کاملSemiparametric autoregressive conditional proportional hazard models
A new semiparametric proportional hazard rate model is proposed which extends standard models to include a dynamic speci cation. Two main problems are resolved in the course of this paper. First, the partial likelihood approach to estimate the components of a standard proportional hazard model is not available in a dynamic model involving lags of the log integrated baseline hazard. We use a dis...
متن کاملFull Bayesian inference with hazard mixture models
Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal is to develop a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2021
ISSN: ['1872-6895', '0304-4076']
DOI: https://doi.org/10.1016/j.jeconom.2019.05.025